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Statistical theory of shot noise in quasi-one-dimensional field-effect transistors in the presence
of electron-electron interaction
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We present an expression for the shot noise power spectral density in quasi-one dimensional conductors
electrostatically controlled by a gate electrode, which includes the effects of Coulomb interaction and of Pauli
exclusion among charge carriers. In this sense, our expression extends the well known Landauer-Biittiker noise
formula to include the effect of Coulomb interaction inducing fluctuations of the potential in the device region.
Our approach is based on evaluating the statistical properties of the scattering matrix and on a second-
quantization many-body description. From a quantitative point of view, statistical properties are obtained by
means of Monte Carlo simulations on an ensemble of different configurations of injected states, requiring the
solution of the Poisson-Schrodinger equation on a three-dimensional grid, with the nonequilibrium Green’s
functions formalism. In a series of examples, we show that failure to consider the effects of Coulomb inter-
action on noise leads to a gross overestimation of the noise spectrum of quasi-one-dimensional devices.
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I. INTRODUCTION

As quasi-one-dimensional field-effect transistors (FETs),
based for example on Carbon nanotubes (CNTSs) or Silicon
nanowires (SNWs), are increasingly investigated as a pos-
sible replacement for conventional planar FETs, it is impor-
tant to achieve complete understanding of the properties of
shot noise of one-dimensional conductors electrostatically
controlled by a third (gate) electrode. Shot noise is particu-
larly sensitive to carrier-carrier interaction, which in turn can
be particularly significant in one-dimensional nanoscale con-
ductors, where electrons are few and screening is limited.!
Low-frequency 1/f noise in quasi one-dimensional conduc-
tors has been the subject of interest for several authors,”*
whereas few experimental papers on shot noise have recently
been published.>*

Due to the small amount of mobile charge in nanoscale
one-dimensional FETs, even in strong inversion, drain cur-
rent fluctuations can heavily affect device electrical behavior.
Of course, noise is an unavoidable and undesirable feature of
electron devices, and its effect must be minimized or kept
within tolerable levels for the operation of electronic circuits.
From a more fundamental point of view, it is also a rich
source of information on electron-electron interaction, which
cannot be obtained from dc or ac electrical characteristics.

The main sources of noise are injection from the contacts
into the device region, through the random occupation of
states around the Fermi energy at the contacts, and partial
transmission of electrons through the conductor, which gives
rise to the so-called partition noise. The main types of inter-
action that have a clear effect on noise are Pauli exclusion,
which reduces fluctuations of the rate of injected electrons by
limiting the occupancy of injected states, and Coulomb re-
pulsions among electrons, which is the cause of fluctuations
of the potential in the device region, that often suppress, but
sometimes enhance the effect of fluctuations in the rate of
injected electrons.

The combined effect of Pauli exclusion and Coulomb re-
pulsion on shot noise has been investigated in the case of
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ballistic double gate MOSFETs,” in planar MOSFETs® and in
resonant tunneling diodes.”>”!! There are still few attempts'?
to a complete quantitative understanding of shot noise in
ballistic CNT and SNW-FETs. Indeed, when addressing a
resonant tunneling diode one can usually adopt an approach
that exploits the fact that the two opaque barriers break the
device in three loosely coupled regions (the two contacts and
the well), among which transitions can described by Fermi
golden rule, as has been done in Refs. 9-11. This is not
possible in the case of a transistor, where coupling between
the channel and the contacts is very good.

Another important issue is represented by the fact that the
widely known Landauer-Biittiker’s noise formula,'>!* does
not take into account the effect of Coulomb interaction on
shot noise through potential fluctuations. Indeed, recent ex-
periments on shot noise in CNT-based Fabry Perot
interferometers® show that in some bias conditions many-
body corrections might be needed to explain the observed
noise suppression. Other experiments show that at low tem-
perature suspended ropes of single-wall carbon nanotubes of
length 0.4 um exhibit a significant suppression of current
fluctuations by a factor smaller than 1/100 compared to full
shot noise.” However, this experimental result is not sup-
ported by a convincing interpretation, since possible expla-
nations extend from ballistic transport in a small number of
tubes within a rope, to diffusive transport in a substantial
fraction of the CNTs.

In this work, we present an expression for the shot noise
power spectral density of ballistic quasi-one-dimensional
channels based on a statistical approach relying on quantities
obtained from Monte Carlo (MC) simulations of randomly
injected electrons from the reservoirs. The expression is de-
rived within the second quantization formalism, and simula-
tions are based on the self-consistent (SC) solution of the
three-dimensional (3D) Poisson and Schrodinger equations,
within the nonequilibrium Green’s function (NEGF)
formalism. '3

Our proposed expression generalizes the Landauer-
Biittiker’s noise formula including the effects of Coulomb

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.81.035329

BETTI, FIORI, AND IANNACCONE

interaction, which is significant for a large class of devices,
and in particular for one-dimensional conductors.

II. THEORY

According to Milatz’s theorem,'® the power spectral den-
sity of the noise current in the zero frequency limit can be
written as S(0)=1im,,,_,.[2/v-var(Il)], where v is the injec-
tion rate of a carrier from a contact and var(l) is the variance
of the current. According to Ref. 17, v can be expressed as
v=AE/(27h) where AE is the energy discretization step,
i.e., the minimum energy separation between injected states.
Indeed, the contribution to the current of a transverse mode
in the energy interval AE can be expressed in the zero-
temperature limit by the Landauer-Biittiker formula as (dI)
=e¢/(27h)AE. On the other hand (dI)=ev, from which v
=AE/(27h) derives. Finally, the power spectral density of
shot noise at zero frequency can be expressed as

2 1
S(0) = lim—var(l) = lim 471%%(). (1)
V0V AE—0 AE

The variance of the current can be derived by means of the
second quantization formalism, which allows a concise treat-
ment of the many-electron problem.

Let us consider a mesoscopic conductor connected to two
reservoirs [source (S) and drain (D)], where electron states
are populated according to their Fermi occupation factors
(Fig. 1). For simplicity, we assume that the conductor is suf-
ficiently short as to completely neglect inelastic scattering
events. Thermalization occurs only in the reservoirs. At zero
magnetic field and far from the interacting channel, the time-
dependent current operator at the source can be expressed as
the difference between the occupation number of carriers
moving inward (Ng,) and outward (Nj,) in each quantum
channel m,!3

1= 3 | dEING, (=N, (ED) ()

meS

where

Ny, (E,1) = f d(hw)al, (E)ag,(E + fiw)e™™,

Ny, (E.f) = f d(fiw)bt, (E)bg,(E+hw)e™™.  (3)

The introduced operators aj, (E) and ag,,(E) create and an-
nihilate, respectively, incident electrons in the source lead
with total energy E in the channel m (Fig. 1). In the same
way, the creation b}, (E) and annihilation bg,,(E) operators
refer to electrons in the source contact for outgoing states.
The channel index m runs over all the transverse modes and
different spin orientations.

The operators a and b are related via a unitary transfor-
mation (n=1,..., W),
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FIG. 1. Annihilation operators for ingoing (ag,,,ap,) and outgo-
ing electron states (bg,,,bp,) in a two terminal scattering problem
(m=1,...,Wg;n=1,...,Wp).

Ws Wp
bSn(E) = E rnm(E)aSm(E) + 2 tr,zm(E)aDm(E)’ (4)

m=1 m=1

where Wg and W), represent the number of quantum channels
in the source and drain leads, respectively, while the blocks r
(size WgX Wy) and t' (size WgX W),), describe electron re-
flection at the source (r) and transmission from drain to
source (t') and are included in the scattering matrix s as'8

_(r t') s
=05 (5)

The dimensions of s are (Wg+Wp) X (Ws+Wp). Blocks t and
r’ in Eq. (5) are related to source-to-drain transmission and
reflection back to the drain, respectively. In the following,
time dependence will be neglected, since we are interested to
the zero frequency case.

If we denote with |o) a many-particle (antisymmetrical)
state, the occupation number in the reservoir « in the channel
m can be expressed as o-am(E):<aLm(E)aam(E)>,,. Pauli ex-
clusion principle does not allow two electrons to occupy the
same spin orbital, therefore ,,,(E) can be either 0 or 1. In
addition, since fluctuations of the potential profile along the
channel due to Coulomb interaction between randomly in-
jected carriers affect the transmission of electrons, the scat-
tering matrix elements have to depend on the occupation
numbers of all states in both reservoirs: s(E)
=slog(E),00(E), - ,0p1(E),0p(E), - +]. Let us stress the
fact that, as pointed out in Ref. 13, whenever a finite channel
is connected to semi-infinite leads, the channel can be con-
sidered as a small perturbation to the equilibrium regime of
the contacts, and independent random statistics can be used
for both reservoirs.

According to Ref. 13, current fluctuations can be evalu-
ated by introducing an ensemble of many electrons states
{loy),|oa),os), -+ ,|on)} and by weighting each state prop-
erly, i.e., by finding its statistical average, denoted by ( ),.
Each reservoir a(a=S,D) is assumed to be at thermal equi-
librium, so that its average occupancy can be described by
the Fermi-Dirac statistics f,. As a consequence, the statistical
average of o,,,(E) reads,"

(O am(E))s = {al(E)a g E)) s = fol E). (6)

Neglecting correlations between the occupation numbers of
the same quantum channel at different energies, or between
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different channels at the same energy, we obtain,'?

<O-am(E)o-Bn(E,)>s :fa(E)fB(E’)’ (7)

for a# Borm#n or E# E'. Including Eq. (6) in Eq. (7) and
exploiting the relation o, (E)*=0,,(E), the average of the
product of two occupation numbers can be expressed as

(Tam(E)og,(E"));
=fEMB(E") + JE = E') 048, faE) = foE)f5(E")],
(8)

where S(E-E'), 64p, O, are Kronecker delta functions.

In order to compute the average current along the channel
and the power spectral density of the current fluctuations, we
need to write the expectation values of the products of two
and four operators, '3

<azm(E)aﬁn(E’)>(r = 5(E - E,) 5a/35mna-am(E) » (9)

(al,(E)ag,(E")dl(E"az(E")),
= 8(E = E")SE" = E") 0450108, 00T am(E)[ 1 = 0 1 (E")]
+ 5(E - E,) 5(E” - EW) 5aB5nm5'y55klo-am(E) o-'yk(E") s
(10)

where the first contribution in Eq. (10) refers to exchange
pairing (a=38, B=7, m=I, n=k), while the second to nor-
mal pairing (a=8, y=35, m=n, k=[)."> For the sake of
simplicity, in the following we denote the expectation {{ ),
as ().

By means of Egs. (4) and (9) the average current reads

<I> = %f dE{ E <[tTt]nn0-Sn>s - 2 <[t,+t/]kkUDk>s}

neS keD

=2 ] 3 (g~ S (@i} (1)
h nes keD

where [],,,=[t"t],, if «=S and [t'*t'],, if a=D (I,p € ).
The unitarity of the matrix s has also been exploited, from
which the relation r'r+tt=1 follows. It is easy to show that
for a non-interacting channel, i.e., when occupancy of in-
jected states does not affect transmission and reflection prob-
abilities, Eq. (I11) reduces to the two-terminal Landauer’s
formula."®

In general, we can observe that for an interacting channel
Eq. (11) provides a different result with respect to Landau-
er’s formula, because fluctuation of transmission probabili-
ties induced by random injection in the device, is responsible
for rectification of the current. The effect is often very small,
but not always.?’ However, it cannot be captured by Land-
auer’s formula, as other many-particle processes affecting
device transport properties.?!??

The mean squared current reads
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2
<12>=<2) J dE | dE' S, {(N,(E)N},(E"))

mmnes

+ (Ns(E)Ng(E'V} = F,+F, +F_ +F__.
(12)

This expression consists of four terms, related to states at the
source contacts, that can be evaluated by means of Egs. (9)
and (10), the first one (F,,) represents the correlation of
fluctuations in two ingoing streams, the second and the third
ones (F,_,F_,) describe the correlations of the fluctuations
of the ingoing and outgoing streams, the fourth one (F__)
refers to two outgoing streams.
The first term F,, can be expressed as

e\2
F++=<Z> de dE’ 2 <0'Sm(E)o-Sn(E,)>s9 (13)
mmneS
since <O§m(E)>S=<USm(E)>S= fs(E) Vm e S. Correlations be-
tween ingoing states are established through the statistical
expectation values of each couple of occupancies of states
injected from the source.
The second contribution F,_ reads

F, =- (%)7 dEf dE’{m%S«l

—[€HE") s osu(E)og(E")),
D> <[t~<E'>]D;kkasm<E)aDk<E'>>x}, (14)

meS keD

since oil(E)=(ra,(E) Viea (a=S,D), due to the Pauli ex-
clusion principle. In Eq. (14) correlations between ingoing
and outgoing states are obtained by summing on each statis-
tical average of the product of two occupation numbers of
injected states, weighted with the reflection (1—-[€(E’)]s.;
=[rr(E’)];) or transmission probability ([€(E")]p.;) of out-
going channels.

By exploiting the anticommutation relations of the fermi-
onic operators a, it is simple to demonstrate that the third
term F_, is identical to F,_. Indeed,

(N5, (E)Ng,(E")) = (N§,(E" )N, (E)). (15)
Finally, the fourth term F__ reads:

2
F__= <2) AEf dE 2 2 <[ﬂa;ll(1 - [ﬂa;ll)(ra])s'

a=S,D lea

e 2
- (Z) AEf dE E 2 <[ﬂa;1p[ﬂa;plaalo-ap>s

a=S.D lpea
I1#p

2
_ 2(%) AE f dEY, 2 ([t [r't oo,

keD peS

+ < |:%f dE(Es [tls.u0s - ]EZ) [ﬂD;kkUDk)]2>s
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+2(5>2dede'Z s
h leS keD
XEE") puosi(E)opi(E"))s

2
_2<§l> def dE’ E <[t~(E)]s;lest(E)Usp(E’))S

LpeS

2
+<§) f dE | dE'S, (o5(E)as,(E")),. (16)

LpeS

Equation (16) contains all correlations between outgoing
electron states in the source lead, where outgoing carriers at
the source can be either reflected carriers incident from S or
transmitted carriers injected from D. By means of the Egs.
(13), (14), and (16), we find the mean squared current

2
<12> = (%) AEJ dE E 2 <[ﬂa;ll(1 - [ﬂa;ll)a-al>s

a=S,D lea

2
—(;) AE f AES S ([TapDapiOaar)s

a=S.D lpea
I1#p
e\’ i
J(Z) AE f dE 2, 2 ([t r]y [r't ] omo,),
keD peS
. 2
+ l;lf dE(E [tls.u0s - E [f]D;kkUDk)] )
leS keD S

(17)

Finally, from Egs. (1), (11), and (17) the noise power spec-
trum can be expressed as

2
S(O) = <e%)f dE E E <[ﬂa;ll(] - [ﬂa;ll)o'al>x

a=S,D le a

62
—_ (%)J dE 2 E <[f]a31P[f]a:plo-aloap>s

a=S.D lpea
1#p
62
- 2( E)f dEkED ES <[t,Tr]kp[r-rt,]pko-Dka-Sp>s
eDpe

AE h neS keD

+ @var{ ff dE(E [EsmTsn— > [ﬂD;kkUDk>}-

(18)

Equation (18) is the main theoretical result of this work, the
power spectral density of the noise current is expressed in
terms of transmission (t,t’), reflection (r) amplitude matri-
ces, and properties of the leads, such as random occupation
numbers of injected states. Let us point out that, although our
derivation starts from Eq. (2), which is valid only far from
the mesoscopic interacting sample, Eq. (18) allows to take
into account both Pauli and Coulomb interactions through
the dependence of t, t’ and r on actually injected states. Let
us note that we go beyond the Hartree approximation by
considering different random configuration of injected elec-
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tron states for different many-particle systems.

There is a crucial difference with respect to Landauer-
Biittiker’s formula, since Eq. (18) enables to consider fluc-
tuations in time of the potential profile along the channel
induced by the electrostatic repulsion between randomly in-
jected electrons from the leads. Essentially, for each random
configuration of injected states from both reservoirs, we con-
sider a snapshot of device operation at a different time in-
stant. All statistical properties—in the limit of zero
frequency—can be obtained by considering a sufficient en-
semble of snapshots.

Let us discuss some physical limits of interest. First, we
consider the case of zero temperature. In such condition the
Fermi factor for populating electron states in the reservoirs is
either O or 1, and all snapshots are identical, so the fourth
term in Eq. (18) disappears. In addition, we can remove the
statistical averaging in Eq. (18) and the first three terms lead
to the following expression of the noise power spectrum,

5(0) = 2¢7 f " dE(Tt[t't] - Te[tTttt]) (19)
- wh Epp ’

where Erg and Erp are the Fermi energies of the source and
drain contacts, respectively. Such terms can be identified
with partition noise (PN) contribution. More in detail, the
first term of Eq. (18) is associated to the quantum uncertainty
of whether an electron injected in the mode / from the res-
ervoir « is transmitted through or reflected by the barrier.
The second term of Eq. (18) contains instead (I# p),

[te],[tt],= 2 ittt (20)
k,qeD

Each term of the sum can be interpreted as the coupling
between a transmission event from channel p € S into chan-
nel k € D and from channel / € § into channel g € D, such a
coupling is due to time-reversed transmissions from k into /
and from ¢ into p.

In the same way, the third term of Eq. (18) contains

[t,Tr]kp[th,]pk= E tzlrlpr:ptkn, (21)
LnesS

which represents the coupling between carriers transmitted
from n € § into k € D and reflected from p € S into [ € S. The
second and third terms provide insights on exchange effects.
Indeed, in such terms, contributions with k#¢q and [#n,
respectively, are complex and they represent exchange inter-
ference effects (fourth-order interference effects) in the
many-particle wave function due to the quantum-mechanical
impossibility to distinguish identical carriers.!” In the Sec.
1V, we will be concerned with identical reservoirs, i.e., iden-
tical injected modes from the contacts. In this case the diag-
onal terms of the partition noise [first term and part of the
third term in Eq. (18)] will be referred as on-diagonal parti-
tion noise (PN ON), while the off-diagonal ones [second
term and part of the third term in Eq. (18)] will be denoted as
off-diagonal contribution to the partition noise (PN OFF).
Now let us assume that the number of quantum channel in
the source is smaller than the one in the drain (Wg= W),) and
let us consider the case of potential barrier wide with respect
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to the wavelength, so that one may neglect tunneling. In such
a situation, the reflection amplitude matrix r is equal to zero
for energies larger than the barrier maximum E, whereas the
transmission amplitude matrix is zero for energies smaller
than E.. By means of the unitarity of the scattering matrix s,
follows t't=1Ig for E> E, where I is the identity matrix of
order W. Due to reversal time symmetry, there are Wg com-
pletely opened quantum channels in the drain contact and
Wp—Ws completely closed. In this situation only the fourth
term in Eq. (18) survives and the noise power spectral den-
sity becomes

S(0) =

202Ws (7
eﬂﬁ SJEC dE[fs(1 = fs) + fp(1 = fp)]

2e*kTWy

TUS(EC) +fp(Ec)]. (22)

When Ep¢=Epp such term obviously reduces to the thermal
noise spectrum 4kTG, where G=[e*Wfs(Ec)]/(h) is the
channel conductance at equilibrium. The fourth term in Eq.
(18) can be therefore identified with the injection noise (IN)
contribution.

Equation (18) describes correlations between transmitted
states coming from the same reservoirs [second term in Eq.
(18)] and between transmitted and reflected states in the
source lead (third term), with a contribution of opposite sign
with respect to the first term. The negative sign derives from
Eq. (10), in which exchange pairings include a minus sign
due to the fermionic nature of electrons. Note that Eq. (18)
can be expressed in a symmetric form with respect to an
exchange between the source and the drain contacts. Indeed,
by exploiting the unitarity of the scattering matrix, the third
term becomes,

2
- (%)I dE2 2, ([t ][t ] opias, )

keD peS

2
- (e_>j dEE 2 <[r,Tt]kp[tTr,]pkUDko'sp>s, (23)

mh keD peS

which establishes correlations between transmitted and re-
flected states in the source and drain leads.

Now let us consider the limit when transmission and re-
flection matrices do not depend on random occupation num-
bers of injected states, i.e., a nonfluctuating potential profile
is imposed along the channel. By exploiting the reversal time
symmetry (s=s!, so that t’ =t'), the unitarity of the scattering
matrix, Eq. (18) reduces to Landauer-Biittiker’s noise
formula,!3

2
S(0) = % f dE >, (Tr[t't] - Te[t'tte] + T,)f,

a=S,D

- f dE X, T.f%-2 f dE(Tit"t] - Tttt t]) fofp

a=S,D

+ f dE 2 (Ti{t'tt't] - T)[fu(1-f)1 (., (24)

a=S,D
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where T,=2,c o[t]4.,[t]4; and the sum does not run on
the spin. Equation (24) then reduces to

2

$0)= 22 [ dB(LA(1 = f3) + o1 = Fo) T E '
+[fs(1 = fo) + o1 = f) AT €'t] - TH{ et e}

(25)

Let us note that Eq. (19) can be recovered as well from Eq.
(25). Indeed at zero temperature the stochastic injection van-
ishes since random statistics coincides to the Fermi factor. In
the same way, Eq. (22) might be derived from Eq. (25), since
in this case noise is only due to the thermionic emission
contribution and fluctuations of the potential profile do not
play any role in noise.

III. COMPUTATIONAL METHODOLOGY AND
QUANTITATIVE ANALYSIS

In order to properly include the effect of Coulomb inter-
action, we self-consistently solve the 3D Poisson equation,
coupled with the Schrodinger equation with open boundary
conditions, within the NEGF formalism, which has been
implemented in our in-house open source simulator NAN-
OTCAD VIDES.?? For what concerns the boundary conditions
of Poisson equations, Dirichlet boundary conditions are im-
posed in correspondence of the metal gates, whereas null
Neumann boundary conditions are applied on the ungated
surfaces of the 3D simulation domain. In particular the 3D
Poisson equation reads

V- [eVo(D]=~[p(7) + pix(P)], (26)

where ¢ is the electrostatic potential, py;, is the fixed charge,
which accounts for ionized impurities in the doped regions,
and p is the charge density per unit volume,

p(A=-e f dE 2, 2, DOS (7, E) 7 4, (E)

E a=S,D nea

i

E;
‘e f iES S DOSu(EEN - 0B,

o0 a=S,.Dnea
(27)

where E; is the midgap potential, DOS,(F,E) is the local
density of states associated to channel n injected from con-
tact a and 7 is the 3D spatial coordinate.

From a computational point of view, modeling of the sto-
chastic injection of electrons from the reservoirs has been
performed by means of statistical simulations taking into ac-
count an ensemble of many electron states, i.e., an ensemble
of random configurations of injected electron states, from
both contacts. In particular, the whole energy range of inte-
gration [Egs. (18) and (27)] has been uniformly discretized
with energy step AE. Then, in order to obtain a random
injection configuration, a random number r uniformly dis-
tributed between 0 and 1 has been extracted for each electron
state represented by energy E, reservoir a and quantum
channel n.>* More in detail, the state is occupied if r is
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FIG. 2. (Color online) a) Noise power spectral density S(0)
obtained from Eq. (18) for a given potential as a function of current
sample number for four different energy steps. b) Relative deviation
of S(0) with respect to Landauer-Biittiker’s limit Eq. (25). The
simulated structure is the SNW-FET shown in Fig. 3.

smaller than the Fermi-Dirac factor, i.e., og,(E)[ op,(E)] is 1
if r<fy(E)[fp(E)], and O otherwise.

The random injection configuration generated in this way
has been then inserted in Eq. (27) and self-consistent solu-
tion of Egs. (26) and (27) and the Schrodinger equations has
been performed. Once convergence has been reached, the
transmission (t,t’) and reflection (r) matrices are computed.
The procedure is repeated several times in order to gather
data from a reasonable ensemble. In our case, we have veri-
fied that an ensemble of 500 random configurations repre-
sents a good trade-off between computational cost and accu-
racy. Finally, the power spectral density S(0) has been
extracted by means of Eq. (18).

In the following, we will refer to self-consistent Monte
Carlo simulations (SC-MC), when statistical simulations us-
ing the procedure described above, i.e., inserting random oc-
cupations oyg,(E) and op,(E) in Eq. (27), are performed. In-
stead, we will refer to SC simulations when the Poisson-
Schrodinger equations are solved considering fg and fp in
Eq. (27). SC-MC simulations of randomly injected electrons
allow considering both the effect of Pauli and Coulomb in-
teraction on noise.

From a numerical point of view, particular attention has to
be posed on the choice of the energy step AE. In Fig. 2 the
noise power spectrum computed by keeping fixed the poten-
tial profile along the channel and performing statistical
Monte Carlo simulations of randomly injected electrons is
shown for four energy steps. As already proved in Eq. (24),
the convergence to Landauer-Biittiker’s limit is ensured for
all the considered energy steps: as can be seen, AE=5
X 10™* eV provides faster convergence as compared to the
other values with a relative error close to 0.16%.

Let us point out that the NEGF formalism computes di-
rectly the total Green’s function G of the channel and the
broadening function of the source (I'g) and drain (I'p) leads,
rather than the scattering matrix s, that relates the outgoing
waves amplitudes to the incoming waves amplitudes at dif-
ferent reservoirs. In order to obtain the matrix s, we have
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FIG. 3. (Color online) 3D structures and transversal cross sec-
tions of the simulated CNT (top) and SNW-FETs (bottom).

exploited the Fisher-Lee relation,® which expresses the ele-
ments of the s-matrix in terms of the Green’s function G and
transverse mode eigenfunctions (see Appendix).

IV. RESULTS

The approach described in the previous section has been
used to study the behavior of shot noise in quasi-one-
dimensional (1D) channel of CNT-FETs and SNW-FETs
with identical reservoirs (Fig. 3). We consider a (13,0) CNT
embedded in SiO, with oxide thickness equal to 1 nm, an
undoped channel of 10 nm and n-doped CNT extensions 10
nm long, with a molar fraction f=5X 1073. The SNW-FET
has an oxide thickness (f,,) equal to 1 nm and the channel
length (L) is 10 nm. The channel is undoped and the source
and drain extensions (10 nm long) are doped with N
=10 cm™. The device cross section is 4 X4 nm?.

From a numerical point of view, a p_-orbital tight-binding
Hamiltonian has been assumed for CNTs,2027 whereas an
effective mass approximation has been considered for
SNWs2829 by means of an adiabatic decoupling in a set of
two-dimensional equations in the transversal plane and in a
set of one-dimensional equations in the longitudinal direction
for each 1D subband. For both devices, we have developed a
quantum ballistic transport model with semi-infinite exten-
sions at their ends. A mode space approach has been adopted,
since only the lowest sub-bands take part to transport. In
particular, we have verified that four modes are enough to
compute the mean current both in the ohmic and saturation
regions. All calculations have been performed at room tem-
perature (T=300 K).

Let us focus our attention on the Fano factor F, defined as
the ratio of the actual noise power spectrum S(0) to the full
shot noise 2¢{I). In Figs. 4 and 5 the contributions to F of
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FIG. 4. (Color online) Contributions to the Fano factor in a
CNT-FET of the on-diagonal and off-diagonal partition noise and of
the injection noise [respectively, on-diagonal and off-diagonal part
of the first three terms, and fourth term in Eq. (18)] as a function of
the gate overdrive Vgg—V/,, for a drain-to-source bias Vpg=0.5 V.
a) The on-diagonal partition (PN ON, solid circles), the injection
(IN, open triangles up) and the full noise (open circles) computed
by means of SC-MC simulations are shown. The Fano factor com-
puted by exploiting Landauer-Biittiker’s formula (25) and SC simu-
lations (solid triangles down) is also shown. b) Off-diagonal parti-
tion noise contribution (PN OFF) to F due to correlation between
transmitted states and between transmitted and reflected states.

partition noise [first three terms in Eq. (18)] and injection
noise (fourth term in Eq. (18)) are shown, as a function of the
gate overdrive Vgg—V,, for a drain-to-source bias Vg
=0.5 V for CNT-FETs and SNW-FETs, respectively, results
have been obtained by means of SC-MC simulations. The
threshold voltage V,, at Vpg=0.5 V is 0.43 V for the CNT-
FET and 0.13 V for the SNW-FET. In particular, Figs. 4(a)
and 5(a) refer to the on-diagonal contribution to the partition
noise (solid circles), to the injection noise (open triangles up)
and to the complete Fano factor (open circles) obtained by
means of Eq. (18), i.e., Pauli and Coulomb interactions si-
multaneously considered. We present also the Fano factor
(solid triangles down) computed by applying Eq. (25) on the
self-consistent potential profile, i.e., when only Pauli exclu-
sion principle is included. In Figs. 4(b) and 5(b) we show the
contribution of the off-diagonal partition noise to F, which
provides a measure of mode-mixing and of exchange inter-
ference effects.

As can be seen in Figs. 4(a) and 5(a), in the subthreshold
regime (Vgs—V,;,<-0.2 V, (I)<10™ A) the Poissonian
noise for a nondegenerate injection is recovered, since
electron-electron interactions are negligible due to the very
small amount of mobile charge in the channel. In the strong
inversion regime instead (Vg5—V,,>0 V, (I)>107 A),
noise is greatly suppressed with respect to the full shot value.
In particular for a SNW-FET, at V;4—V,;,=0.4 V ((I)=2.4
X 10~ A), combined Pauli and Coulomb interactions sup-
press shot noise down to 22% of the full shot noise value,
while for CNT-FET the Fano factor is equal to 0.27 at Vg
-V,;,=~03 V ((I)=1.4X107 A). This is due to the fact
that as soon as an electron is injected, the barrier height
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FIG. 5. (Color online) Contributions to the Fano factor in a
SNW-FET of the on-diagonal and off-diagonal partition noise and
of the injection noise, obtained for Vpg=0.5 V, as a function of the
gate overdrive Vgg—V,, in a SNW-FET. In a) the on-diagonal par-
tition, the injection and the full noise computed by means of
SC-MC simulations (both Pauli and Coulomb interactions taken
into account) are shown together with results obtained by means of
Eq. (25). b) Off-diagonal partition noise due to correlation between
transmitted states and between transmitted and reflected states.

along the channel increases, leading to a reduced transmis-
sion probability for other electrons.

As shown in Fig. 4(a), the dominant noise source in bal-
listic CNT-FETs is the on-diagonal partition noise and the
noise due to the intrinsic thermal agitations of charge carriers
in the contacts (injection noise), which is at most the 36% of
the partition noise (Vgg—V,,=-0.1 V). Nearly identical re-
sults are shown for SNW-FETs, with the exception of a
stronger contribution given by the injection noise, up to the
86% of the on-diagonal partition term (V;5—V,;,=~-0.2 V).
Moreover, the behavior of the two noise components, as a
function of Vgg—V,,, is very similar for both CNT- and
SNW-FETs, F tends to 1 in the subthreshold regime, while in
strong inversion regime shot noise is strongly suppressed.

Let us stress that an SC-MC simulation exploiting Eq.
(18) is mandatory for a quantitative evaluation of noise. In-
deed, by only considering Pauli exclusion principle through
formula (25), one would have overestimated shot noise by
180% for SNW-FET (Vg5—V,;,=0.4 V) and by 70% for
CNT-FET (Vg5—V,,=0.3 V). 2024

It is interesting to observe that the off-diagonal contribu-
tion to partition noise, due to exchange correlations between
transmitted states and between transmitted and reflected
states, has a strong dependence on the height of the potential
profile along the channel (variation of 5 orders of magnitude
for CNT-FETs) and is negligible for quasi one-dimensional
FETs. In particular, for CNT-FETs such term is at most 5
orders of magnitude smaller than the on-diagonal partition
noise or injection noise in the strong inversion regime (Vg
-V,;,=~0.3 V), while in the subthreshold regime its magni-
tude still reduces (about 107!! for V;5—V,,~-0.4 V). For
SNW-FETs we have obtained similar results, the off-
diagonal partition noise is indeed at most 5 orders of magni-
tude smaller than the other two contributions.

In such conditions, transmission occurs only along sepa-
rate quantum channels and an uncoupled mode approach is
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also accurate. Indeed, off-diagonal partition noise provides
interesting information on the strength of the mode-coupling,
which, as already seen, is very small. In particular, neglect-
ing this term, results obtained from Eq. (18) can be recov-
ered as well.

In the previous discussion, carriers from different quan-
tum channels do not interfere. However, since we deal with a
many indistinguishable particle system, such effects can
come into play. To this purpose, we investigate in more detail
two examples, in which exchange pairings, that include also
exchange interference effects, give a non-negligible contri-
bution to drain current noise. In the past exchange interfer-
ence effects have been already predicted for example in bal-
listic conductor with an elastic scattering center in the
channel,® in diffusive four-terminal conductors of arbitrary
shape®! and in quantum dot in the quantum Hall regime,*
connected to two leads via quantum point contacts.

In the first case, we discuss, mode-mixing does not ap-
pear, i.e., the nondiagonal elements of the matrices t't and
t'’r are negligible with respect to the diagonal ones. Since
the off-diagonal partition noise is negligible and since in the
third term in Eq. (18) only contributions with indices [=n
=k=p survive, exchange interference effects do not contrib-
ute to electrical noise. We consider a CNT-FET at low bias
condition: Vp¢=50 mV. In Fig. 6(a) the on-diagonal parti-
tion noise, the injection noise and correlations due to the
off-diagonal partition noise, evaluated performing statistical
SC-MC simulations, are shown. In this case, on-diagonal
correlations between transmitted and reflected states in the
source lead (in the same quantum channel) extremely affect
noise. Indeed, at the energies at which reflection events in the
source lead are allowed, also electrons coming from D can
be transmitted into the injecting contact S, since the corre-
sponding energy states in D are occupied and the barrier
height is small. Instead the exchange correlations represented
by the off-diagonal partition noise are negligible, since they
are at least 5 order of magnitude smaller than the other three
terms in Eq. (18). Note that the noise enhancement obtained
both in the inversion and subthreshold regimes is due to the
fact that at low bias the current (I) becomes small, while the
noise power spectrum S(0) tends to a finite value, because of
the thermal noise contribution.

Let now consider the situation in which modes are
coupled and exchange interference effects, through the off-
diagonal partition noise, contribute to drain current fluctua-
tions. We consider the interesting case in which a vacancy,
i.e., a missing carbon atom, is placed at the center of the
channel of a (13,0) CNT-FET. From a numerical point of
view, this defect can be modeled by introducing a strong
repulsive potential (i.e., +8 €V, much larger than the energy
gap of a (13,0) CNT: E,,,~0.75 eV) in correspondence of
such site, thus acting as a barrier for transmission in the
middle of the channel [Fig. 6(c)].

In Fig. 6(b) the three noise sources in Eq. (18) (on and
off-diagonal partition noise, injection noise) are plotted as a
function of the gate voltage Vg in the above threshold re-
gime for Vp=0.5 V, along with the full Fano factor com-
puted performing SC and SC-MC simulations. Remarkably,
in this case a mode space approach taking into account all
modes (i.e., 13) is mandatory in order to reproduce all cor-
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FIG. 6. (Color online) a) Contributions to the Fano factor F by
the on-diagonal partition noise (solid circles), and the injection
noise (open triangles up) as a function of the gate overdrive Vg
-V, for a drain-to-source bias Vpg=50 mV. The simulated device
is @ CNT-FET. The full noise computed by means of SC-MC simu-
lations (open circles, both Pauli and Coulomb interactions taken
into account) and applying Eq. (25) (solid triangles down, only
Pauli exclusion considered) is also shown. b) Contributions to F by
the on-diagonal and off-diagonal partition noise and by the injection
noise [exploiting Eq. (18)] as a function of the gate overdrive for a
CNT-FET with a vacancy in a site at the center of the channel. The
drain-to-source bias is 0.5 V. ¢) Self-consistent midgap potential
obtained by using the Fermi statistics for a gate voltage Vg
=0.7 V and a bias Vpg=0.5 V. Z is the transport direction along
the channel, X is a transversal direction. The simulated device is the
same of b).

relation effects on noise. As can be seen, off-diagonal ex-
change correlations gives rise to a not negligible correction
to the Fano factor (=4% of the full Fano factor at Vg
=0.8 V). We observe that such correlations are only estab-
lished between transmitted electrons states [second term in
Eq. (18)], while correlations between reflected and transmit-
ted electron states [third term in Eq. (18)] are negligible
since almost all electrons injected from the receiving contact
D are reflected back because of the high bias condition. In
this paper we have assumed phase-coherent quantum trans-
port at room temperature. Our tools cannot include electron-
phonon interaction, that a room temperature may play a role
even in nanoscale devices. Reference 33 has considered the
effect of electron-phonon scattering and has neglected Cou-
lomb interaction: they find that electron-phonon scattering
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increase shot noise in the above threshold regime, due to the
broadening of the energy range of electron states contribut-
ing to transport.

V. CONCLUSION

We have developed a novel and general approach to study
shot noise in ballistic quasi one-dimensional CNT-FETs and
SNW-FETs. By means of a statistical approach within the
second quantization formalism, we have shown that the
Landauer-Biittiker noise formula [Eq. (25)] can be general-
ized to include also Coulomb repulsion among electrons.
This point is crucial, since we have verified that by only
using Landauer-Biittiker noise formula, i.e., considering only
Pauli exclusion principle, one can overestimate shot noise by
as much as 180%. From a computational point of view, we
have quantitatively evaluated shot noise in CNT-FETs and
SNW-FETs by self-consistently solving the electrostatics and
the transport equations within the NEGF formalism, for a
large ensemble of snapshots of device operation, each corre-
sponding to a different configuration of the occupation of
injected states.

Furthermore, with our approach we are able to observe a
rectification of the dc characteristics due to fluctuations of
the channel potential, and to identify and evaluate quantita-
tively the different contributions to shot noise. We are also
able to consider the exchange interference effects, which are
often negligible but can be measurable when a defect, intro-
ducing significant mode mixing, is inserted in the channel.
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APPENDIX

Let us consider a 2D channel of length L and denote with
x and y the longitudinal direction and the transverse one,
respectively. If the interface between the lead S (D) and the
conductor is defined by xg=0(xp=0), Gps(yp;vs)=Gpslxp
=0,yp;x5=0,y5) represents the wave function at (xp
=0,yp) due to an excitation at (xg=0,ys). In real space the
Fisher-Lee relation reads,

N
lh\’vﬂv}ﬂ
~— Ot P fd)’DJ dysx»(yp)Gps(yp:ys)

Xn(Vs), (A.1)

where n is a mode outgoing at lead D with velocity v, m is
a mode incoming at lead S with velocity v,, and a is the
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lattice constant along the x direction. In the k-representation,
for a conductor of uniform cross-section, we can exploit a
mode representation in the transverse direction and a plane
wave representation in the longitudinal direction and Eq.
(A.1) becomes

fL —
InNv,v
-6, + I mGDs(}’l,m),

i (A.2)

Snm =

where Gpg(n,m)=Gpg(n,k,;m,k,) and k, is the longitudi-
nal wave vector of the transverse mode n. Let us assume
both leads to be identical and denote with
{3, ... ,kls\,}({k? ...,k the set of wave vectors associated
to the N modes coming from the lead S (D). Since the only

nonzero components of the self-energy involve the end-
points, in the k-representation I'g and I, can be expressed as

r _(FS;” 0) r _(0 0 )
S 0 0/oy 0 \0 Tpoo/onxan

(kS
where Fs;ll(n,m)=5nmhv(L,,)

ho(ky)
=8 Vn,meD.

Generalization to a CNT-FET structure is straightforward.
Let us indicate with N and N, the number of carbon atoms
rings and the number of modes propagating along the chan-
nel, respectively. Since the coupling between the identical
reservoirs and the channel involve only the end rings of the
channel, I'gy and I'j, are (NyN¢o) X (NyNe) diagonal matrix
and the only nonzero blocks are the first one and the latter
one, respectively:

Vn,meS and I'p.pn(n,m)

hu(k,)

FS;ll(n7m)=5nm vn7m=17”‘7NMv

fiv(k,)

Tpo y (1,m) = 8, Vnm=1, - ,Ny.

(A.3)

By exploiting Egs. (A.2) and (A.3) we can find the transmis-
sion (t) and reflection (r) amplitude matrix,

tnm =i \/FD;NCNC(n’n)GNCI(n’m) V’FS;ll(msm)’

rnm = - 5nm + i\'FS;ll(n,n)GH(n,m)\"Fs;ll(m,m).
(A.4)

Since at zero magnetic field t'=t', relations Eq. (A.4) is all
we need to compute the power spectral density Eq. (1) from
Eq. (18). A similar procedure has been adopted for SNW-
FETs where, from a computational point of view, the channel
has been discretized in a sequence of slices in the longitudi-
nal direction. In this case equations in Eq. (A.4) are obtained
as well, but replacing the number of rings with the number of
slices.
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